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Abstract - This paper demonstrates a parameter identification problem encountered in the assay of
intermediate-level nuclear waste vaults. A high-level model of the vault contents is employed in which
a likely geometry is assumed so as to reduce the number of unknown quantities in the resulting inverse
problem. The inverse problem of identifying model parameters is solved with limited, but quantifiable
precision.

1. INTRODUCTION

Transmission tomography, in which radiation is passed through a target object as in an X-ray photograph,
is of long-standing interest in the nuclear community [8, 11]. Transmission tomography suffers from the
drawback that it can be used only for the examination of small-scale containers and vessels and in
particular, for each projection, a source must be placed on one side of the object in order to detect
radiation that has passed through the object. Thus access to a considerable portion of the boundary is
a pre-requisite for transmission tomography and so is not a practical option for many industrial targets
such as storage vaults. Recently, emission tomography, in which radiation emitted by the target object
is measured, has also been studied for the assay of large-scale nuclear process vessels and waste vaults
[2]. In this paper, a model problem involving the assay of an intermediate-level waste vault is presented.
The task of identifying physical variables from gamma ray count data can lead to a problem which is
ill-posed.

A ‘high-level’ model is employed to model the vault and its contents in which the likely geometry is
assumed, in contrast to low-level approaches where the domain, or at least the target itself, is discretized
into pixels (2D picture elements) or voxels (3D volume elements). The advantage of the high-level
approach is that only a small number of key process parameters need to be identified in the inverse
identification problem. This is very important since the number of measurements recorded in industrial
applications is typically small due to limited access to vaults owing to shielding materials for example.
Consequently, with a pixellized approach, the scarcity of measurement data would lead to an irretrievably
ill-posed inverse problem, whereas the high-level approach with a parsimonious parameterization, might
be less ill-posed and yield parameter estimates with better precision.

In the direct problem, the number of counts, ¥(r), received at a gamma ray detector located at a
position r the volume V| is calculated. An integral equation of mono-energetic gamma ray transport for
the photon flux, ¥(r), is employed, see [3, 18]. The required equation is
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where 7 is the location of a gamma ray detector in space, S(r') are the gamma ray sources at locations
7’ in space, yu is the linear attenuation coefficient and dV”’ is an element of the volume containing sources
that is in the field-of-view of the detector. The number of counts, ¥(rp) (dimensionless), is obtained from
¥(rp) by applying a point-spread function (PSF) to the flux 9(r ). The PSF describes the weighting of
the detector response to radiation sources at all positions within the field-of-view. The use of the mono-
energetic eqn.(1) is justified practically since detectors exist which can discriminate between gamma ray
energies, see [9, 10].

A statistical approach to the inverse problem is adopted which allows the quantification of the relia-
bility of reconstructions.
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2. HIGH-LEVEL MODEL AND THE DIRECT PROBLEM
The geometry considered is similar to the ‘layered-earth’ models employed in geological resistivity imaging,
and is described in terms of this particular application. The waste vault may be modeled as a cuboid
region

A={(z,94,2): 0<2<L0<y<WO0<z<H}, where L>H>W. (2)

The z coordinate is such that z = 0 at the base of the vault, and increases vertically upwards towards
the surface of the waste at z = H. Typical dimensions of intermediate-level waste (ILW) vaults would
be L~11m, W ~3mand H~ 8 m.

Two different processes have been used to fill the vaults leading to the contents being stratified into
a two-layer structure, the locations of the layers being described by

A = {{z,9,2):0<2<L0<y<Wh <z<H}, (3a)
Ay = {(2,4,2):0<2<L,0<y<W,0<z< M}, (3b)

so that A = A1 U As. The surface layer A1, contains magnesium oxide (magnox) metal waste of emission
density Sy, Bqm *, with a proportion of nimonic alloy springs of emission density S, Bqm >, with
Sm <€ Sy. Note that the units of volumetric emission density are Becquerels per cubic metre. The linear
attenuation coefficients of the magnox and nimonic materials are y, m ' and g, m—', respectively, with
tm ~ O(pn). The depth of the top layer is h = H — hy. Note that in general layer A3 is much deeper than
A1, see Figure 1. The substrate layer As, contains the same magnox metal with a smaller proportion of
nimonic alloy springs.

(L2, Wi2, a+H) N\ 0

(a) (b)

Figure 1: Schematics of the vault: (a) schematic of the vault in the (z, z)-plane; the coordinate y goes
into the page and (b) a schematic of the volume V' of material containing sources that is viewed by the
detector.

The source densities and linear attenuation coefficients are known for the magnox metal and nimonic
springs. However, each layer contains a mixture of both of these constituents. Weighted source densities
and linear attenuation coefficients are calculated for each layer, taking into account the quantity of each
type of material present. The volume fraction of springs present in layers A; and As is denoted by
01(z) and o3(z), repsectively and the packing fractions of the materials are denoted by p1(z) and pa(z),
respectively. The weighted source and attenuations are given by

Sl (Z
pa(z

) p1(018n + (1 — 01)Sm), )
) = pi(orpm + (1 —01)pm), } in A, (4)

for the surface layer and,

Sa(z) = p2(02Sn + (1 —02)Sm), .
po(z) = pa(ozpm + (1 —02)pm), } in Ao, (5)

for the substrate layer, where the argument z of the quantities o and p has been suppressed for simplicity.

The detector is placed at a distance a m above the waste, i.e. at coordinates (L/2,W/2 a + H).
The detector makes scans at angles § measured from ¢ = 0 parallel to the z axis with # increasing in
a clockwise sense. The measurements of gamma ray counts are recorded according to a measurement
protocol which examines a transect along the centre of the vault, i.e. parallel to the z axis at y = W/2.
A number, N, of measurements are taken at equi-spaced intervals in . In this application N will be
relatively small, certainly less than 100, say. Figure 1(a) shows the angle 6.
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The volume integral in eqn.(1) is an integral over the volume of the waste that contains sources that are
visible to the detector. In this case it is a truncated ‘cone’ whose vertex is at the detector, see Figure 1(b).
The integral over this truncated cone is evaluated by employing a local system of cylindrical coordinates
(r, 9, z) with its origin at rp = (L/2,W/2,a+ H) and the z axis aligned with the direction 6;, i.e. the
angle at which the j-th measurement is recorded. The volume element is therefore dV = rdrdfdz.
The angle « is semi-angle of the (truncated) cone; the so-called angle of acceptance. Usually detectors
are collimated to restrict «; indeed in this work « = 47 /180, i.e. 4°. The evaluation of the integrals is
performed numerically using Gaussian quadrature, [5, 17].

To obtain the number of counts ¥(#) from the fux ¥(#) requires the application of a poini-spread
or detector response function, [9]. The application of the point spread function (PSF) is naturally
accommodated by the convolution of ¥(#) and the PSF, [3]. In order to simulate experimental noise,
Gaussian random noise is added independently to each count. Although radiation emission is a Poisson
process, in practice the number of observed counts is large enough to allow the large-mean Gaussian
approximation to the Poisson distribution to be used, as in [2]. Therefore, the measurements are defined
to be

n="T(0) +8(¢%) (6)

where 17 € are the measured gamma counts including noise, 8(¢?) € RV*! is a vector whose
components are zero-mean Gaussian noise with variance ¢2 and ¥(0) € RV*! are the noise-free counts
given by the convolution of (#) with the point-spread function.

The estimation of a number m of key process quantities, represented by the vector 3, given the mea-
surements 77, is the determination of a cause given the effect; in essence an inverse problem.

3. ANALYSIS

The measurements (dependent variables) 17 can be thought of as depending on the independent variables
B, called the state variables. In this case the state variables are the gamma ray emission densities of each
layer (S7 and S2), the linear attenuation coeflicients (u1 and pe) and the depth h of layer A;. The state

RN><1

variables are assembled into the vector 3 = (h, y1, p2, S1, S2)7 for which an estimate, 3 is sought; for a
detailed account see [1].

In the model problem presented here, the state variables employed in the direct problem are calculated
from the values Sy, =1 Bqm >, S, =450 Bqm >, gty = 1 m~ ! and g, = 1.5 m~ ! via eqns (4) and (5),
giving B = (0.50,0.67,0.68,29.84,6.79)7. With this information, the measurement curve for the angle 0
plotted against the measurement 77 appears as in Figure 2, with 10 % random noise as an example value.

T

400

200

Figure 2: Number of counts ¥ (solid line) and N = 32 noise-corrupted measurements i (plus signs),
plotted against the angle 6.

The sensitivity of the measurements 7 to perturbations of the state variables, i.e. the components of 3,

may be examined by calculating the sensitivity relations and assembling these into a matrix Z € RVx™,
gives
] ,
Z(n;, Be) =Lk = 95, for 7=1,...,N and k=1,...,m; (7)
2

where N is the number of measurements taken and m is the number of quantities to be estimated, here
m = 5. The sensitivity relations are computed by a central-difference approximation. The matrix Z can
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be viewed as the Jacobian of a transformation from the state variables, i.e. the components of 3, to the
measurements ;.
The singular value decomposition of the matrix Z is defined by,

5
Z-UsV" = usiv] . (8)
=1

Analysis of the singular values, s;, and right singular vectors, v}, of the (N x m) matrix Z, can give
an indication of which quantities may be difficult to estimate with good confidence, for full details see
[6]. The singular value decomposition of the (32 x 5) matrix Z yields singular values, s;, shown in the
log-linear plot below; Figure 3(a). Figure 3(b) shows the matrix Z interpolated onto a fine grid for

visualization, whilst (c¢) and (d) show examples of the right singular vectors v}

i
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Figure 3: The sensitivity matrix Z; in (a) the singular values and in (b) the matrix interpolated onto a fine
grid for visualization. The right singular vectors scaled to the canonical interval [—1, 1], corresponding
to (c) the largest singular value, s1, and (d) the smallest singular value, ss5.

By mathematical convention the singular values are arranged in non-increasing order and therefore
their ordering does not necessarily match the order of the components of the vector 3. Consequently, a
new index 7 is introduced for the singular values and vectors as an aide memoire of this point.

In Figure 3(b), the index k does correspond with the components of 3 = (h, p1, po, S1, S2)7 and j
is the measurement index; 7 = 1,...,32. Examination of Figure 3(b) shows that only the columns of Z
relating to B, B2 and B3 exhibit non-zero values. The two source densities, 83 = S; and 85 = S2 have
Z;s =~ 0and Z;5 ~ 0 for all j. This corresponds with the two smallest singular values (s4 and s5) in
Figure 3(a).

Estimation of the components of 3 corresponding to the smallest singular values will be difficult or
impossible due the components of the measurements in those directions, i.e. the corresponding v!, being
strongly affected by the noise. This can be demonstrated by examining the vectors v7 and vl . Figure
3(c) shows the vector vT corresponding to the largest singular value and which is smooth in appearance.
Figure 3(d) shows v which corresponds to the smallest singular value and which oscillates due to the
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effects of random noise. State variables corresponding to small singular values are often difficult to
estimate with good confidence.
To determine an estimate 3 of 3, the arguments 3 which minimize an objective function of the form

1 ~
E(B) = - 15(8) - nlly + B - Bl2, >0, (9)

must be performed, where B is a vector encoding the prior information. In eqn.(9) 17 and B3 have their
usual meanings, whilst f : R™*! — RV*1 refers to direct solution of eqn.(1) with arguments 3, i.e. the
measurement model. The penalty functional A||3 — BH 120 increases the value of the objective function if B
is not ‘close’ to the prior information thereby regularizing the solution. The p-norm in eqn.(9) is usually
taken to be the Euclidean 2-norm, however a sum of moduli 1-norm can also be employed to good effect.
The sum of squares of errors in eqn.(9), is weighted by the observed counts to adjust for the variance
being proportional to the count.

There are many methods for the optimization of functions of the form of eqn.(9), see for example [4].
However, the analysis performed above which culminated in Figures 3(a) and (b), gives an indication
that gradient-based optimization methods will fail due to approximately zero gradients with respect to
two of the components of 3. Therefore a gradient-free optimization method should be employed.

4. BAYESTIAN APPROACH TO THE INVERSE PROBLEM

Progress can be made if a change of paradigm is considered. Rather than considering the components
of B as a vector of deterministic values, they are now thought of as random variables, allowing Bayesian
statistical methods to be applied.

Each of the N measurements will be regarded as being distributed independently of other mea-
surements. In fact each measurement will have a Poisson distribution (see for example [12]) but for
convenience will be approximated with a Gaussian distribution with mean f;(3) (fori=1,..., N) and
variance f;(3), see eqn.(6). This defines the likelihood, i.e. the probability of the measurements 1 being
recorded given the values 3. The Gaussian likelihood is denoted by £(3|n) and is given by

(pla) — (2ndeu(Ce)) " exp (~50(8) "€ U B) - m). (10)

where f(3) represents the direct (measurement) model and C; is the variance-covariance matrix of the
measurements. Since the measurements are assumed to be independently distributed, the covariance
matrix takes the form C¢ = &%ly, where Iy is the identity matrix in RNXN Tt is assumed that some
prior information is known about the components of 3. This could take a number of forms. Here a very
simple form only is considered for clarity of exposition. It is assumed that each element of the parameter
vector is independently distributed about a mean 3 and variance {7, mathematically expressed by

1

P(B) — (2rdet(€e)) ™ exp (—@

1Be — Ekné) , (1)

where Bk are a priori estimates of the state variable 35 and C; is the variance-covariance matrix of
the prior distribution. The use of eqns (10) and (11) is becoming more common in tomographic inverse
problems, and implicitly underpin all ‘regularized least squares’ methods. The posterior density function
describes the distribution of the state variables given the prescribed prior knowledge. The posterior
density Q(8|n), assuming that prior and likelihood distributions are independent, is the product of the
likelihood and the prior, that is

Q(Bln) = L(BIM)P(B)- (12)

The interpretation of eqn.(12) is that the solution of the inverse problem is now the posterior probability of
the variables 3, conditioned on the observed gamma ray counts 1. By sampling the posterior distribution,
estimates of the values of the random variables 3 are determined. Full details of the Bayesian approach
may be found in [13].

Assuming for simplicity that the prior knowledge of one parameter is independent of all of the others,
the prior variance—covariance matrix is C; = (xl,,. Taking the logarithm of the product of eqns (10) and
(11) defines the log-posterior density given by

log Q(Bln)  constant — (£(8) ~ )" (F(8) —m) ~ > o (B — i) - (13

2
k=1 Ck
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in which the ratios of the observation variance £? and the prior density variances (7, conveniently defines
a regularization parameter for the variable 8, i.e. A\ = 262/(37.

4.1. Estimation

Although the prior and the likelihood are both Gaussian distributions, the likelihood is Gaussian with
respect to the measurements i whilst the prior is Gaussian with respect to the state variables 3. One
approach to estimation is to approximate the posterior with a Gaussian curve and calculate the posterior
mean and variance-covariance matrix. This leads to the calculation of regularized least squares estimates
which are commonly employed. It will be seen however in Subsection 4.2 that the posterior in this
case is not symmetric and therefore the Gaussian approximation to the posterior would be biased and
misleading.

Markov chain Monte Carlo techniques have been developed [14, 7] to generate samples from the
posterior so that sufficient samples can be obtained in order to describe the posterior distribution of the
state variables.

Sampling the posterior is accomplished computationally by the Metropolis—Hastings algorithm which
simulates Markov chains in the state space, [14, 7]. The Markov chains, with runs of sufficient length,
explore a large range of feasible estimates for 3. At at each step of the algorithm the regularized energy,
defined by eqn.(13), is computed. At each iteration, a randomly generated perturbation to the model f
is proposed, and the consequent change in the energy AF is determined. If AE < 0, i.e. the pertur-
bation results in a lower energy, the new state is automatically accepted. If AE > 0, the new state is
accepted with a probability P = exp(—AFE). Therefore the Metropolis—Hastings algorithm can accept a
perturbation of the current state which results in an increase of energy, i.e. AFE > 0. This makes the
Metropolis—Hastings algorithm a robust, gradient-free method for the optimization of objective functions
with multiple local minima, and/or indistinct global minima.

4.2. Results R

A simplex method is employed from a random starting state to give an initial estimate, 8,, which is
employed as the starting state of the Metropolis—Hastings algorithm. The Markov chain produced by the
Metropolis—Hastings algorithm does not converge but with a sufficiently long run, the mean of the chain
is calculated and this mean will converge to the mean of the posterior distribution. The most commonly
employed summary of the posterior distribution is the posterior mean, denoted by 3;,;. The values 3
which give rise to the smallest value of the energy as per eqn.(9), defines the maximum a posteriori
(MAP) estimate, denoted by BMAP'

!

. . . 0 . !
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
iteration iteration

(a) (b)

Figure 4: Examples of the Markov chains for (a) the attenuation coefficient p1 and (b) the depth, h, of
layer A;; 10000 chain samples are employed.

Figure 4 shows two examples of the Markov chains for (a) p; and (b) h. The chains can be seen to
vary in the vicinity of ‘target’ values indicated by the horizontal line. Table 1 summarizes the salient
features of the marginal posterior distributions of the estimated values 3.

Note that Table 1 shows that the state variables p1 and h have the least degree of regularization: that
is the prior information has less influence for these variables. It is indeed these two state variables that
it is expected that the measurements will provide the most information, since the layer A1 to which they
relate is closest to the detector.

The most important information in Table 1 are the credibility regions. Essentially these give the degree
of reliability of the estimates. For example, there is a 95 % chance that the value of S; is in the range
(30.61, 31.55). The size of the credibility interval may be reduced if a reduction in the degree of reliability
of the estimates is accepted. For example, if a 90 % credibility region is adopted, then there is a 90 %
chance that S7 lies in the smaller interval (30.65,31.48). From an industrial standpoint, the provision of
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Figure 5: Examples of histograms posterior marginal distributions for (a) the source S1, (b) the source
Sa, (¢) the attenuation coefficient w1, (d) and (e) the depth, h, of layer A;; 10000 chain samples are
employed. Figures (f) to (j) show the marginal distributions as determined by kernel smoothing.



Table 1: Regularization parameters Ay, = 2£2 /¢ and estimated values B with 90 % and 95 % credibility
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regions.
B | A Bo Bar | Buap | 90 % credibility region | 95 % credibility region
S, | 8.0 | 33.57 | 31.06 | 31.10 (30.65,31.48) (30.61,31.55)
Sy |20 5.8 | 694 | 7.02 (6.12,7.76) (5.95,7.92)
p | 09] 068 | 079 | 0.69 (0.21,1.01) (0.06,1.06)
us | 80| 0.80 | 067 | 061 (0.25,1.09) (0.16,1.17)
h|05] 041 | 066 | 046 (0.22,1.41) (0.09,1.85)

the credibility regions is an extremely useful diagnostic tool since it provides a quantitative measure of
the reliability of the estimation technique, which is often based upon very restricted or poor-quality data.

It can be extremely useful to examine the marginal posterior distributions graphically, as in Figure 5.
It can be seen that the histogram of the posterior distribution of y; in Figures 5(c) and (h) is unimodal
with relatively little spread as compared with the distribution of, say h; Figures 5(e) and (j). The mode
of the posterior marginal distribution of 35 = 1 is a little larger than ‘target’ value of p; = 0.67.

Figures 5 (e) and (j) shows the histogram for the distribution of h. The spread is much larger than
that observed for p1, but the mode corresponds approximately to the ‘target’ of h = 0.50. The graphical
representation of the marginal distributions gives a qualitative feel for the distribution of the estimated
values, and should be used as a visual reinforcement for the data in Table 1. Note that the distribution
of h is skewed to the right. The computational effort for the numerical evaluation of the posterior is
therefore justified.

It can be seen for example that although the bulk of the posterior distribution suggests that h has a
relatively low value, around 0.5 m, it is credible that & could be much larger, around 1.25 m say, given
the data collected. This has implications for strategy should it be necessary to retrieve waste from the
vault.

Correlations between state variables can also be determined from the chain. This shows that there
is little correlation between most variables (absolute value of the correlation is less than 0.1) except
that the correlation between h and g1 which is high (0.6608). Consequently greater prior information
concerning the attenuation in the upper layer would increase the precision with which h can be estimated.

5. CONCLUSIONS
A high-level model for the contents of an intermediate-level nuclear waste vault has been considered. The
high-level approach is necessitated as a consequence of the available data being of limited quantity and
quality. The resulting inverse problem then contains only a few key quantities which need to be identified.
It was shown that despite the high-level model, some quantities are difficult to obtain by traditional
gradient-based optimization approaches, due to zero gradients with respect to two of the state variables.
A paradigm shift towards considering the quantities to be estimated as random variables allows
Bayesian statistics to be employed. The Bayesian approach, which is implemented computationally by
a Markov chain Monte-Carlo method allows greater robustness and flexibility in summarizing the recon-
structed values. In particular the posterior distribution is skewed with respect to at least one of the
key state variables (h). The presentation of credibility intervals and/or marginal distributions provides
valuable information for industrial utilization.
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